Lecția 6. M U L Ț I M EA NUMERELOR RAȚIONALE (II) – pregătirea Evaluării Naționale 2020

30 puncte bonus
0 rezolvări
Engleză

Fracții echivalente

Două fracții mn și pq se numesc echivalente dacă sunt egale, adică au aceeași reprezentare. (valorile rapoartelor sunt egale)
Exemple: 12=36 (valoarea comună este 0,5); -59=-1018 (valoarea comună este -0,(5)); mn=pq⇔m·q=n·p

Fracțiile echivalente cu o fracție dată se obțin prin simplificare sau amplificare.

Număr rațional

Numerele raționale sunt fracțiile ireductibile, adică putem defini mulțimea numerelor raționale ca fiind ℚ=mn|m,n∈ℤ,n≠0,m.n=1
Exemplu: 25 este fracție ireductibilă pentru că (2, 5,)=1, deci reprezintă numărul rațional = 0,4615 este tot numărul rațional 25 pentru că (6, 15)=3, deci 615(3=25=0,4

Transformarea fracțiilor
Pentru a transforma o fracție ordinară în fracție zecimală, efectuăm împărțirea (numărătorul îl împărțim la numitor)
Exemplu: -12=-0,5

Pentru a transforma o fracție zecimală finită în fracție ordinară folosim formula a0,a1a2…an⇀=a0a1a2…an1000…0,a0∈ℤ, a1, a2,…an cifre (sunt n cifre de 0 la numitor)
Exemplu: 12,34=1234100(2=61750

Pentru a transforma o fracție zecimală periodică simplă în fracție ordinară folosim formula a0,a1a2…an=a0a1…an-a099…9,a0∈ℤ,a1, a2,…an cifre (sunt n cifre de 9 la numitor)
Exemplu: 12,34=1234-1299=122299

Pentru a transforma o fracție zecimală periodică mixtă în fracție ordinară folosim formula a0,a1a2anb1b2…bm=a0a1…anb1b2…bm=a0a1…an99…900…0, a0∈ℤ,a1,a2,…an,b1,b2,…,bm cifre (sunt m cifre de 9  și n cifre de 0 la numitor)
Exemplu: 1,2(34)=1234-12990=1222990(2=611495

Compararea numerelor raționale
pentru a compara două fracții ordinare, avem nevoie să aibă același numitor (de obicei). ab≤cb⇔a≤c(b > 0)
Exemple: 35≤75 pentru că 3≤7; -23=-23≤-13=-13;
OBS: Dacă nu avem același numitor, aducem fracțiile la același numitor.

pentru a compara două fracții zecimale, comparăm părțile întregi. Dacă sunt diferite, putem stabili deja că numărul cu partea întreagă mai mare este mai mare.

Dacă sunt egale părțile întregi, comparăm, pe rând, fiecare zecimală până găsim o pereche diferită (dacă nu sunt zecimale diferite, atunci numerele vor fi egale), zecimala mai mare ne va indica numărul mai mare (pentru numere pozitive), zecimala mai mică ne va indica numărul mai mare (pentru numere negative).
Exemple:
12,34 > 10,345 (pentru că 12 >10)
-3,24 < -1,9 (pentru că -3 < -1)
0,12 < 0,2 (pentru că 0 = 0, 1 < 2 , numere pozitive)
– 5,12 > – 5,2 (pentru că -5 = -5, 1 < 2 , numere negative)
1,2(3) = 1, 23333…> 1,2323…= 1,(23)
– 5,42(7)= -5,42777… <  -5, 427 ( 42777…> 427, numere negative )

Riscuri (greșeli)
– să confundăm formulele de la transformările fracțiilor zecimale în fracții ordinare
KIDI- sfat: să efectuăm verificarea ( împărțirea – adică transformarea inversă)
să confundăm fracția cu numărul rațional
KIDI- sfat:  întotdeauna rezultatele trebuie să fie scrise sub formă de fracție ireductibilă; acela este numărul rațional.

Felicitări! Ai terminat cursul!

„A N T R E N A M E N T U L   KIDI-10”

.

Ufo eat all the school library. Can you prove her that you are smarter?

Great! To see your results, you must create your Kidibot FREE account (or login here ). This way, you’ll not loose the points you won for this quiz.

Exemple de întrebări din quizul "Lecția 6. M U L Ț I M EA NUMERELOR RAȚIONALE (II) – pregătirea Evaluării Naționale 2020"

  • ab=cb. Atunci
  • 1,ab < 1,(b) Atunci
  • Numerele 12;1,2;05;0,5;105 reprezintă

Crezi că poți face un quiz mai bun decât Lecția 6. M U L Ț I M EA NUMERELOR RAȚIONALE (II) – pregătirea Evaluării Naționale 2020?

Click aici
Probleme cu Lecția 6. M U L Ț I M EA NUMERELOR RAȚIONALE (II) – pregătirea Evaluării Naționale 2020? Raportează!

Partener Principal:

Kidibot caută partener principal!

Susținători activi:

Kidibot este sustinut de OMV Petrom Kidibot este sustinut de Țara lui Andrei Kidibot este sustinut de Robofun
Kidibot este sustinut de Interbrand Kidibot este sustinut de Zooku Kidibot este sustinut de Societatea Muzicala

Parteneri educaționali:

Kidibot este sustinut de Știință și Tehnică Kidibot este sustinut de Raiffeisen Bank Kidibot este sustinut de Astroclubul Bucuresti

Finanțator:

Kidibot este sustinut de 
Departamentul pentru Relația cu Republica Moldova

Proiectul Clubul Kidibot AI - Folosim Inteligența Artificială să învățăm Limba Română este finanțat de Departamentul pentru Relația cu Republica Moldova. www.drrm.gov.ro.
Conţinutul acestui site nu reprezintă poziţia
oficială a Departamentului pentru Relația cu Republica Moldova
.

KIDIBOT în lume:

USA | UK | CA | IT | RO
Total time: 0.8066668510437 s